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ABSTRACT

Let S be a set of n sites 
hosen independently from a uniform distribution

in a 
ube in 3�dimensional Eu
lidean spa
e. In this paper, work by Bentley,

Weide and Yao is extended to show that the Voronoi diagram for S has an

expe
ted O(n) number of fa
es. A 
onsequen
e of the proof of this result is

that the Voronoi diagram for S 
an be 
onstru
ted in expe
ted O(n) time.

1. INTRODUCTION

Consider a set S = fp

1

; : : : ; p

n

g of n sites in d�dimensional Eu
lidean spa
e

E

d

. The Voronoi diagram for S is a sequen
e V (p

1

), : : : , V (p

n

) of 
onvex

polyhedra 
overing E

d

, where for ea
h i, i = 1; : : : ; n, V (p

i

) is the Voronoi

polyhedron of p

i

relative to S, i. e. the set of all points x in the spa
e su
h that

p

i

is as 
lose to x as is any other site in S.

The Voronoi diagram is an important geometri
al 
on
ept that is used for

solving a large number of problems in many areas. A

ordingly, several al-

gorithms have been devised and implemented for 
onstru
ting it in two and

higher dimensions (see Bentley, Weide and Yao (1980), Bowyer (1981), Bros-

tow, Dussault and Fox (1978), Brown (1979), Finney (1979), Green and Sibson

(1978), Lee and S
ha
hter (1980), Maus (1984), Ohya, Iri and Murota (1984),

Seidel (1986), Shamos (1978), Shamos and Hoey (1975), Tanemura, Ogawa and

Ogita (1983), Watson (1981), Witzgall (1973b)), and many of its statisti
al

and geometri
al properties have been derived (see Bentley, et al. (1980), Klee

(1980), Lawson (1977), Lee and S
ha
hter (1980), Miles (1970), Pas
hinger

(1982), Preparata (1977), Seidel (1982), Shamos (1978), Shamos and Hoey

(1975), Witzgall (1973a)).
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In this paper, we further develop the work by Bentley, Weide and Yao

(1980) that relates to the expe
ted 
omplexity of Voronoi diagrams. Given

a set S of n sites 
hosen independently from a uniform distribution in a

d�dimensional hyper
ube, Bentley, et al. show that with the ex
eption of

at most an expe
ted O(n

1�1=d

� logn) number of polyhedra, ea
h polyhedron

in the Voronoi diagram for S has an expe
ted 
onstant number of fa
es. With

m de�ned as the largest integer less than or equal to n

1=d

, i. e. the 
oor of

n

1=d

, Bentley, et al. �rst divide the hyper
ube into m

d

equal-sized 
ells. Given


 > 0 and de�ning LG(n) as the 
oor of 
 � logn, where log denotes the natu-

ral logarithm, Bentley, et al. then show that for ea
h site p in S the expe
ted

number of fa
es of V (p) is 
onstant if p is not 
onstained in any of the out-

ermost LG(n) layers of 
ells of the hyper
ube. However, Bentley, et al. leave

un
lear how to 
ompute the expe
ted 
omplexity of the Voronoi diagram for

S due to the Voronoi polyhedra of the sites in the outermost LG(n) layers of


ells of the hyper
ube.

In what follows, we extend the work by Bentley, et al. to show that in

3�dimensional Eu
lidean spa
e, O(n

2=3

� (
 � logn)

4

) is an upper bound for

the expe
ted number of fa
es of the Voronoi diagram for S that are also fa
es

of Voronoi polyhedra of sites in the outermost LG(n) layers of 
ells of the


ube. This result and those in Bentley, et al. (1980) then imply that the

expe
ted number of fa
es of the Voronoi diagram for the n sites is O(n).

A

ordingly, we 
onje
ture that in E

d

, for �xed d > 3, similar results hold for

(d� 1)�dimensional fa
es or fa
ets, i. e. O(n

1�1=d

� (
 � logn)

d+1

) is an upper

bound for the expe
ted number of fa
ets of the Voronoi diagram for S that are

also fa
ets of Voronoi polyhedra of sites in the outermost LG(n) layers of 
ells

of the hyper
ube, and O(n) is the expe
ted number of fa
ets of the Voronoi

diagram for the n sites.

2. TERMINOLOGY

Let S = fp

1

; : : : ; p

n

g be a set of n points in E

3


hosen independently from a

uniform distribution in a 
ube R. In what follows, a point in E

3

will be 
alled

a site if and only if it belongs to S. With m de�ned as the 
oor of n

1=3

, assume

as in Bentley, et al. (1980) that R has been divided into m

3

equal-sized 
ells.

Given a site q, de�ne the 1

st

layer of 
ells that surrounds q as the 
olle
tion

of 
ells that 
ontain q. Indu
tively, given k � 1, assume that the k

th

layer of


ells that surrounds q has been de�ned. De�ne the (k + 1)

th

layer of 
ells that

surrounds q as the 
olle
tion, possibly empty, of 
ells that have one or more

points in 
ommon with 
ells in the k

th

layer, and that do not belong to the

�rst k layers.

Let l
ell and v
ell represent, respe
tively, the length and volume of ea
h


ell.
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Given numbers 
, 


0

, 


00

, 0 < 
 � 


0

, 


00

� 1, de�ne LG(n) and LG

0

(n) as the


oors of 
 � logn and 


0

� logn, respe
tively, and assume n is large enough so

that LG(n) > 2 and 2

3=2

� 


00

� LG

0

(n) � 2

�1

� n

1=3

.

Let

^

k denote the largest integer k for whi
h

2

k=2

� 


00

� LG

0

(n) � 2

�1

� n

1=3

:

It follows from the assumptions on n that

^

k � 3.

Set LG

0

(n) equal to LG(n), and LG

k

(n) equal to LG

0

(n) for ea
h k,

k = 1; : : : ;

^

k � 2.

Let f

i

, i = 1; : : : ; 6, represent the fa
ets of R, and let � denote [

6

i=1

f

i

, i. e.

the boundary of R.

Given a point x in E

3

and a subset W of E

3

, de�ne dist(x;W ) as the

minimum value of jjx�wjj for w inW , where jj�jj represents the 3�dimensional

Eu
lidean norm.

From the assumptions on n, several nonempty subsets of R 
an be de�ned

as follows:

R

�1

� fx 2 R : dist(x;�) � l
ell � LG(n)g:

R

0

� fx 2 R : l
ell � 2 � dist(x;�) < l
ell � LG(n)g:

R

^

k

� fx 2 R : dist(x;�) < l
ell � 2

�

^

k+2

g:

For ea
h k, k = 1; : : : ;

^

k � 1,

R

k

� fx 2 R : l
ell � 2

�k+1

� dist(x;�) < l
ell � 2

�k+2

g:

For ea
h i, k, i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2,

R

i

k

� fx 2 R

k

: dist(x; f

j

) � l
ell � 2

k=2

� 


00

� LG

k

(n); j = 1; : : : ; 6; j 6= ig:

It follows from these de�nitions that the sets R

k

, k = �1; : : : ;

^

k, are pair-wise

disjoint nested regions of the 
ube R, and

R = [

^

k

k=�1

R

k

:

Finally, de�ne R

�2

, a possibly empty subset of R, as follows:

R

�2

� fx 2 R : dist(x;�) � l
ell � (1 + 


00

) � LG(n)g:
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The signi�
an
e of these regions as it relates to our purposes 
an be sum-

marized as follows. R

�1

is essentially that region of the 
ube R obtained by

subtra
ting the outermost LG(n) layers of 
ells of R from R. From Bentley,

et al. (1980), the Voronoi polyhedron of a site in R

�1

is of expe
ted 
on-

stant 
omplexity. R

0

is essentially that region of R obtained by subtra
ting

from the outermost LG(n) layers of 
ells of R the outermost two layers. R

k

,

k = 1; : : : ;

^

k, are regions of R whose union is essentially that region of R 
om-

posed of the outermost two layers of 
ells of R, and whose thi
knesses 
orre-

spond to the terms of the geometri
 series expanded to the �rst

^

k � 1 terms

together with the remainder. R

i

k

, i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2, are subsets

of R

k

, k = 0; : : : ;

^

k � 2, respe
tively, de�ned in su
h a way that due to their

positions relative to the boundary of R and the geometri
 series aspe
t of R

k

,

k = 1; : : : ;

^

k � 2, for a properly sele
ted value of 


00

the expe
ted 
omplexity

of the Voronoi diagram for S due to the Voronoi polyhedra of sites in these

regions is linear. They are also de�ned in su
h a way that due to the de�ni-

tions of

^

k, R

^

k�1

and R

^

k

, and the geometri
 series aspe
t of R

k

, k = 1; : : : ;

^

k,

the expe
ted number of sites in [

^

k

k=0

R

k

n [

6

i=1

[

^

k�2

k=0

R

i

k

is small enough that it

does not a�e
t the linearity of the overall expe
ted 
omplexity of the diagram

even under the worst possible 
ir
umstan
es (see Se
tion 3). Finally, R

�2

is a

subset of R

�1

de�ned in su
h a way that sites in this region are highly unlikely

to have Voronoi neighbors in the outermost LG(n) layers of 
ells of R while

R

�1

nR

�2

is a region of R essentially 
omposed of O(LG(n)) 
ontiguous layers

of 
ells of R.

For ea
h fa
et f of R, let H(f) represent the plane that 
ontains f , and

for ea
h site q, let T

f

(q) represent the point in f that is the perpendi
ular

proje
tion of q onto f .

Given i, k, 1 � i � 6, 0 � k �

^

k� 2, and a site q in R

i

k

, let v, v

0

and v

00

be

verti
es of R in f

i

for whi
h v

0

� v is perpendi
ular to v

00

� v, and for ea
h j,

j = 0; : : : ; 8, de�ne a point t

j

in H(f

i

) by

t

j

� T

f

i

(q) + (v

0

� v) � 
os(j�=4) + (v

00

� v) � sin(j�=4):

In addition, for ea
h j, j = 1; : : : ; 8, let O

j

be the o
tant in H(f

i

) that is the


onvex hull of the rays T

f

i

(q)

~

t

j�1

and T

f

i

(q)

~

t

j

, and say that O

j

, j = 1; : : : ; 8,

are the o
tants asso
iated with q. Finally, if within the �rst 2

k=2

� LG

k

(n) layers

of 
ells that surround q, for ea
h j, j = 1; : : : ; 8, there exists a site q

j

su
h that

dist(q

j

; f

i

) < l
ell � 2

�k

and the ray q~q

j

interse
ts O

j

, say that q is o
tant-
losed

and that q

j

, j = 1; : : : ; 8, render q o
tant-
losed.

Given i, k, q, v, v

0

, v

00

as above, let v

000

be a vertex of R for whi
h v

000

� v is

perpendi
ular to v

0

� v and v

00

� v, and for ea
h j, j = 0; : : : ; 8, and ea
h m,
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m = 0; : : : ; 3, de�ne a point r

jm

by

r

jm

� q + ((v

0

� v) � 
os(j�=4) + (v

00

� v) � sin(j�=4)) � sin(m�=4)

+ (v

000

� v) � 
os(m�=4):

In addition, for ea
h j, j = 1; : : : ; 8, and ea
h m, m = 1; 2; 3, let U

jm

be the


one that is the 
onvex hull of the rays q~r

j�1;m�1

, q~r

j;m�1

, q~r

j�1;m

, and q~r

jm

,

and say that U

jm

, j = 1; : : : ; 8, m = 1; 2; 3, are the 
ones asso
iated with q.

Finally, if within the �rst 2

k=2

� LG

k

(n) layers of 
ells that surround q, for ea
h

j, j = 1; : : : ; 8, and ea
h m, m = 1; 2; 3, there exists a site s

jm

, s

jm

6= q, su
h

that s

jm

belongs to U

jm

, say that q is 
one-
losed and that s

jm

, j = 1; : : : ; 8,

m = 1; 2; 3, render q 
one-
losed.

Given q as above, say that q is 
losed if it is o
tant-
losed and 
one-
losed.

As it will be shown in Se
tion 3, Voronoi polyhedra of 
losed sites are of

expe
ted 
omplexity a

eptable for our purposes.

Given i, k, q as above, de�ne C

f

i

(q) and C(q) as the 
losed half-spa
es

that 
ontain T

f

i

(q) and q, respe
tively, and that are determined by the plane

parallel to H(f

i

) that 
ontains (T

f

i

(q) + q)=2. De�ne S

f

i

(q) as the subset of S

for whi
h a site p 2 S

f

i

(q) if and only if V (p)\V (q)\C

f

i

(q) 6= ;, and S(q) as

the subset of S for whi
h a site p 2 S(q) if and only if V (p)\V (q)\C(q) 6= ;.

Finally, given sites p and q, say that p is a Voronoi neighbor relative to S

of q if V (p) and V (q) have a fa
et in 
ommon.

3. RESULTS

In this se
tion, based on the terminology developed in Se
tion 2, we prove the

following theorem whi
h is the main result of this paper.

Theorem. O(n

2=3

� (
 � logn)

4

) is an upper bound for the expe
ted number of

fa
es of the Voronoi diagram for S that are also fa
es of Voronoi polyhedra of

sites in R nR

�1

.

The proof of this theorem 
onsists of partitioning the 
ube into the regions

de�ned in Se
tion 2 and then 
omputing where ne
essary the expe
ted number

of Voronoi neighbor pairs within and between these regions. It requires some

preliminary results whi
h we present in the form of propositions. In the �rst

two propositions it is essentially shown that Voronoi polyhedra of 
losed sites

are of expe
ted 
omplexity a

eptable for our purposes.
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Proposition 1. Given i, k, 1 � i � 6, 0 � k �

^

k � 2, a site q in R

i

k

, and

o
tants and sites O

j

, q

j

, j = 1; : : : ; 8, su
h that O

j

, j = 1; : : : ; 8, are the o
-

tants asso
iated with q, and q

j

, j = 1; : : : ; 8, render q o
tant-
losed, if q

0

is a

site su
h that for ea
h j, j = 1; : : : ; 8, jjq

0

� qjj >

p

2 jjq

0

j

� qjj, where q

0

j

is the

interse
tion of q~q

j

and O

j

, then q

0

62 S

f

i

(q).

Proof. Let q

0

be one su
h site, and de�ne J

0

as the plane that perpendi
ularly

bise
ts the line segment [q

0

; q℄, and C

0

as the open half-spa
e determined by J

0

that 
ontains q. We show that C

0


ontains V (q) \ C

f

i

(q), so that q

0

62 S

f

i

(q).

Assume, without any loss of generality, that q

0

is in f

i

, T

f

i

(q) 6= q

0

j

, for ea
h

j, j = 1; 2, T

f

i

(q)~q

1

0

6= T

f

i

(q)~q

2

0

, and q

0

is in the 
onvex hull of T

f

i

(q)~q

1

0

and

T

f

i

(q)~q

2

0

.

Let J

0

1

and J

0

2

be the planes that are the perpendi
ular bise
tors of the line

segments [q

0

1

; q℄ and [q

0

2

; q℄, respe
tively. Let B be the region that is the in-

terse
tion of C

f

i

(q) and the 
losed half-spa
es determined by J

0

1

and J

0

2

that


ontain q. We show B is the 
onvex hull of a region K

0

and a ray ~u

0

, both of

whi
h lie in C

0

. Sin
e C

0

is 
onvex, and B 
ontains V (q) \ C

f

i

(q), the result

then follows.

To this end, let H

0

be the plane that 
ontains (T

f

i

(q) + q)=2 and is parallel to

H(f

i

); let H

00

be the plane that 
ontains q and is parallel to H(f

i

); let q

00

, q

00

1

,

q

00

2

be the perpendi
ular proje
tions onto H

00

of q

0

, q

0

1

, q

0

2

, respe
tively; let h

0

,

h

0

1

, h

0

2

be the lines that are the interse
tions of H

0

with J

0

, J

0

1

, J

0

2

, respe
tively;

and let h

00

, h

00

1

, h

00

2

be the lines in H

00

that perpendi
ularly bise
t [q

00

; q℄, [q

00

1

; q℄,

[q

00

2

; q℄, respe
tively.

Let q̂ be the perpendi
ular proje
tion of q onto H

0

. De�ne K

0

as the inter-

se
tion of the half-planes in H

0

determined by h

0

1

and h

0

2

that 
ontain q̂, and

K

00

as the interse
tion of the half-planes in H

00

determined by h

00

1

and h

00

2

that


ontain q.

In order to show that C

0

� K

0

, we �rst prove that jjq

00

� qjj >

p

2 jjq

00

j

� qjj for

ea
h j, j = 1; 2. To this end, for ea
h j, j = 1; 2, we have

jjq

00

� qjj

2

+ jjq

0

� q

00

jj

2

= jjq

0

� qjj

2

> 2 jjq

0

j

� qjj

2

= 2 (jjq

00

j

� qjj

2

+ jjq

0

j

� q

00

j

jj

2

)

= 2 jjq

00

j

� qjj

2

+ 2 jjq

0

j

� q

00

j

jj

2

:

But jjq

0

� q

00

jj equals jjq

0

j

� q

00

j

jj for ea
h j, j = 1; 2, so that

jjq

00

� qjj

2

> 2 jjq

00

j

� qjj

2

+ jjq

0

j

� q

00

j

jj

2

;

for ea
h j, j = 1; 2, and the inequalities follow.

Sin
e q

0

1

and q

0

2

belong to the 
ontiguous o
tants O

1

and O

2

, respe
tively, it
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follows that h

00

does not interse
t K

00

. But by similar triangles, h

00

, h

00

1

, h

00

2

are

the perpendi
ular proje
tions onto H

00

of h

0

, h

0

1

, h

0

2

, respe
tively. Thus, K

00

is

the perpendi
ular proje
tion of K

0

onto H

00

, and therefore, h

0


an not interse
t

K

0

, whi
h shows C

0


ontains K

0

.

In order to obtain ~u

0

, let H

�

be the plane that 
ontains q, q

0

1

, and q

0

2

; let

C

�

be the 
losed half-spa
e determined by H

�

that 
ontains T

f

i

(q); let w

0

be

the line that is the interse
tion of the planes J

0

1

and J

0

2

; let J

�

be the plane

that 
ontains q and q

0

, and that is perpendi
ular to H

�

; and let w

00

be the

perpendi
ular proje
tion onto J

�

of w

0

.

Sin
e w

0

is perpendi
ular to H

�

, so is w

00

, and sin
e from the de�nition of q

0

,

q

0

is not in C

�

, we must have that w

00


ontains a ray ~u

00

that lies 
ompletely in

C

0

\ C

�

\ C

f

i

(q). Therefore, from the de�nition of w

00

, it follows that w

0

must


ontain a ray ~u

0

that is also 
ontained in C

0

\ C

�

\ C

f

i

(q).

Sin
e B is 
learly the 
onvex hull of K

0

and ~u

0

, the proof is now 
omplete.

Proposition 2. Given i, k, 1 � i � 6, 0 � k �

^

k � 2, and a site q in R

i

k

,

if q is 
losed then for some 
onstant M > 0 independent of q, i, k and n, the

smallest number of 
ontiguous layers of 
ells that surround q and 
ontain ea
h

Voronoi neighbor of q is bounded above by M � 2

k=2

� LG

k

(n).

Proof. Let O

j

, j = 1; : : : ; 8, be o
tants asso
iated with q, let q

j

, j = 1; : : : ; 8,

be sites that render q o
tant-
losed, and let s

jm

, j = 1; : : : ; 8, m = 1; 2; 3, be

sites that render q 
one-
losed.

Using arguments similar to those developed in Bentley, et al. (1980), it 
an be

shown that the existen
e of the sites s

jm

, j = 1; : : : ; 8, m = 1; 2; 3, implies that

for some 
onstant M

1

> 0 independent of q, i, k and n, the smallest number of


ontiguous layers of 
ells that surround q and 
ontain S(q) is bounded above

by M

1

� 2

k=2

� LG

k

(n).

We show a similar result for S

f

i

(q).

For ea
h j, j = 1; : : : ; 8, dist(q

j

; f

i

) < l
ell � 2

�k

. Thus, by similar triangles,

sin
e q is 
ontained in R

k

so that dist(q; f

i

) � l
ell � 2

�k+1

, we must have that

for ea
h j, j = 1; : : : ; 8, jjq

0

j

� qjj � 2 jjq

j

� qjj, where q

0

j

is the interse
tion of

q~q

j

and O

j

.

Thus, if q

0

is a site su
h that for ea
h j, j = 1; : : : ; 8, jjq

0

� qjj > 2

p

2 jjq

j

� qjj

then for ea
h j, j = 1; : : : ; 8, jjq

0

� qjj >

p

2 jjq

0

j

� qjj, and by Proposition 1,

q

0

62 S

f

i

(q).

Therefore, sin
e for ea
h j, j = 1; : : : ; 8, q

j

is also 
ontained in the �rst 2

k=2

�

LG

k

(n) layers of 
ells that surround q, it follows that for some 
onstantM

2

> 0

independent of q, i, k and n, the smallest number of 
ontiguous layers of 
ells

that surround q and 
ontain S

f

i

(q) is bounded above by M

2

� 2

k=2

� LG

k

(n).

The proof of the proposition is now 
omplete sin
e the union of S(q) and S

f

i

(q)


ontains ea
h Voronoi neighbor of q.

7



In the next proposition it is shown that the probability that a site is not


losed is very small and uniform for all sites to whi
h the de�nition of a 
losed

site applies.

Proposition 3. Given i, k, 1 � i � 6, 0 � k �

^

k � 2, and a site

q in R

i

k

, there exist positive 
onstants M

1

and M

2

independent of q, i, k

and n, su
h that the probability that q is not 
losed is bounded above by

M

1

� exp(�M

2

� (LG

k

(n))

2

), where exp is the exponential fun
tion.

Proof. Let O

j

, j = 1; : : : ; 8, be the o
tants asso
iated with q, and let U

jm

,

j = 1; : : : ; 8, m = 1; 2; 3, be the 
ones asso
iated with q.

For ea
h j, j = 1; : : : ; 8, de�ne O

0

j

as the subset of R for whi
h a point

p 2 O

0

j

if and only if p is within the �rst 2

k=2

� LG

k

(n) layers of 
ells that sur-

round q, dist(p; f

i

) < l
ell � 2

�k

, and q~p interse
ts O

j

. In addition, for ea
h j,

j = 1; : : : ; 8, and ea
h m, m = 1; 2; 3, de�ne U

0

jm

as the subset of R for whi
h

a point p 2 U

0

jm

if and only if p is within the �rst 2

k=2

� LG

k

(n) layers of 
ells

that surround q, and p is in U

jm

.

From the de�nition of R

i

k

and sin
e 


00

� 1, the volume of [

8

j=1

O

0

j

is then

approximately equal to

(2 � 2

k=2

� LG

k

(n))

2

� (2

�k

) � v
ell = (4 � 2

k

� (LG

k

(n))

2

) � (2

�k

) � v
ell

= 4 � (LG

k

(n))

2

� v
ell;

so that for ea
h j, j = 1; : : : ; 8, the volume of O

0

j

is approximately equal to

(1=8) � 4 � (LG

k

(n))

2

� v
ell = (1=2) � (LG

k

(n))

2

� v
ell:

Thus, a positive 
onstant M

2

exists, independent of q, i, k and n, su
h that

for ea
h j, j = 1; : : : ; 8, M

2

� (LG

k

(n))

2

� v
ell is a lower bound for the volume

of O

0

j

.

Therefore, sin
e for ea
h j, j = 1; : : : ; 8, ea
h m, m = 1; 2; 3, and ea
h h,

h = 1; : : : ; 8, the volume of U

0

jm

is larger than the volume of O

0

h

, it follows,

using arguments developed in Bentley, et al. (1980), that

(8 + 8 � 3) � exp(�M

2

� (LG

k

(n))

2

) = 32 � exp(�M

2

� (LG

k

(n))

2

)

is an upper bound for the probability that at least one of O

0

j

, j = 1; : : : ; 8,

U

0

jm

, j = 1; : : : ; 8, m = 1; 2; 3, does not 
ontain a site.

Thus, by settingM

1

equal to 32, the proof of the proposition is then 
omplete.

In the next four propositions it is shown that due to the positions of R

i

k

,

i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2, relative to the boundary of R and the geomet-

ri
 series aspe
t of R

k

, k = 1; : : : ;

^

k � 2, for a properly sele
ted value of 


00

8



the Voronoi polyhedra of sites in R

i

k

, i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2, are of a
-


eptable expe
ted 
omplexity. It is also shown that due to the geometri


series aspe
t of R

k

, k = 1; : : : ;

^

k, and the de�nitions of

^

k, R

^

k�1

, R

^

k

, and R

i

k

,

i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2, in [

^

k

k=0

R

k

n [

6

i=1

[

^

k�2

k=0

R

i

k

the expe
ted number

of sites is small enough to be also a

eptable for our purposes.

Proposition 4. Given a site q in

^

R � [

6

i=1

R

i

0

, let N(q) be the number

of Voronoi neighbors in R nR

�2

of q. The expe
ted value of

P

q2

^

R

N(q) is

bounded above by

O(n

2=3

� (LG(n))

4

):

Proof. Let m̂ be the 
oor of n

1=3

� (LG(n))

�1

and assume R has been divided

into m̂

3

equal-sized 
ubes. LetB be one su
h 
ube and assume B has nonempty

interse
tion with

^

R.

Let M be as in Proposition 2, and let B

0

be the region in R whi
h is the

union of B and the 
ells in the �rst M � LG(n) 
ontiguous layers of 
ells that

surround B.

Given q in B let N

0

(q) be the number of Voronoi neighbors in B

0

of q.

Let F denote the event that all sites in B are 
losed.

We de�ne several probabilities and random variables relating to B as follows:

P

1

� Probability that F o

urs.

P

2

� Probability that F does not o

ur.

T � Value of

P

q2B

N(q).

T

1

� Value of

P

q2B

N(q) given that F o

urs.

T

2

� Value of

P

q2B

N(q) given that F does not o

ur.

T

0

� Value of

P

q2B

N

0

(q).

T

0

1

� Value of

P

q2B

N

0

(q) given that F o

urs.

T

0

2

� Value of

P

q2B

N

0

(q) given that F does not o

ur.

W � Number of sites in B.

W

0

� Number of sites in B

0

.

In what follows, given a random variable X, E(X) and V AR(X) denote the

expe
ted value and varian
e of X, respe
tively.

We note that sin
e W

0

is binomially distributed then V AR(W

0

) < E(W

0

).

Thus,

E(T

0

) � E(W �W

0

) � E((W

0

)

2

) = (E(W

0

))

2

+ V AR(W

0

)

< (E(W

0

))

2

+ E(W

0

) = O(((LG(n))

3

)

2

) +O((LG(n))

3

)

= O((LG(n))

6

):

From Proposition 3, there exist positive 
onstants M

1

and M

2

independent of

n, su
h that P

2

�M

1

� exp(�M

2

� (LG(n))

2

) � n. Thus, P

1

approa
hes 1 as n

in
reases, and sin
e E(T

0

) = P

1

�E(T

0

1

) + P

2

�E(T

0

2

), we must have that

E(T

0

1

) = (E(T

0

)� P

2

� E(T

0

2

))=P

1

9



� E(T

0

)=P

1

= O((LG(n))

6

)=P

1

= O((LG(n))

6

):

But, from Proposition 2, T

1

� T

0

1

, so that

E(T

1

) � E(T

0

1

) � O((LG(n))

6

):

Thus,

E(T ) = P

1

� E(T

1

) + P

2

� E(T

2

)

� O((LG(n))

6

) + P

2

� n

2

= O((LG(n))

6

):

Finally, sin
e the number of 
ubes su
h as B is O(n

2=3

� (LG(n))

�2

), it follows

that the expe
ted value of

P

q2

^

R

N(q) is bounded above by

O(n

2=3

� (LG(n))

�2

) �O((LG(n))

6

) = O(n

2=3

� (LG(n))

4

);

whi
h 
ompletes the proof of the proposition.

Proposition 5. Given i, k, 1 � i � 6, 1 � k �

^

k � 2, and a site q in R

i

k

,

let N(q) be the number of Voronoi neighbors in [

^

k

l=0

R

l

n [

k�1

l=0

R

i

l

of q. For


onstants M , M

0

> 0 independent of i, k and n, if 


00

� (2 +

p

2) �M then the

expe
ted value of

P

q2R

i

k

N(q) is bounded above by

M

0

� 2

�k

� n

2=3

� (LG

0

(n))

2

:

Proof. De�ne

^

R

i

k

, a nonempty subset of R that 
ontains R

i

k

, as follows:

^

R

i

k

� fx 2 R : l
ell � 2

�k+1

� dist(x; f

i

) < l
ell � 2

�k+2

g:

Let m̂ be the 
oor of n

1=3

� (2

k=2

� LG

0

(n))

�1

and assume

^

R

i

k

has been divided

into m̂

2

equal-sized slabs of thi
kness 2

�k+1

. Let

~

B be one su
h slab and

assume B �

~

B \ R

i

k

is not empty.

Let M be as in Proposition 2, let

^

B be the union of the 
ells in the �rst

M � 2

k=2

� LG

0

(n) 
ontiguous layers of 
ells that surround B, and let B

0

be the

region in R whi
h is the union of B and

^

B \ ([

^

k

l=0

R

l

n [

k�1

l=0

R

i

l

).

We 
ompute the expe
ted number of sites in B

0

.




00

� (2 +

p

2) �M and 


0

� 
 imply that




00

� 2

k=2

� LG

0

(n)�M � 2

k=2

� LG

0

(n) � 


00

� 2

(k�1)=2

� LG

k�1

(n);

so that B

0

is 
ontained in [

^

k

l=k

R

l

and therefore, for some 
onstant M

00

> 0

independent of i, k and n, has a volume bounded above by

(M

00

� 2

k=2

� LG

0

(n))

2

� ((

P

^

k�1

l=k

2

�l+1

) + 2

�

^

k+2

) � v
ell

= (M

00

)

2

� 2

k

� (LG

0

(n))

2

� (2

�k+2

) � v
ell

= 4 � (M

00

)

2

� (LG

0

(n))

2

� v
ell:

10



Thus, 4 � (M

00

)

2

� (LG

0

(n))

2

is an upper bound for the expe
ted number of sites

in B

0

.

Using arguments similar to those employed in the proof of Proposition 4, we


an now show that for some 
onstant M

0

> 0 independent of i, k and n, the

expe
ted value of

P

q2B

N(q) is bounded above by M

0

� (LG

0

(n))

4

. Therefore,

sin
e n

2=3

� (2

k=2

� LG

0

(n))

�2

is an upper bound for the number of slabs su
h

as

~

B, it follows that the expe
ted value of

P

q2R

i

k

N(q) is bounded above by

n

2=3

� (2

k=2

� LG

0

(n))

�2

�M

0

� (LG

0

(n))

4

=M

0

� 2

�k

� n

2=3

� (LG

0

(n))

2

;

whi
h 
ompletes the proof of the proposition.

Proposition 6. The expe
ted number of sites in [

^

k

l=

^

k�1

R

l

is bounded above

by

384 � (


00

� LG

0

(n))

2

:

Proof. Sin
e

^

k is the largest integer k

0

for whi
h

2

k

0

=2

� 


00

� LG

0

(n) � 2

�1

� n

1=3

;

we must have that the volume of [

^

k

l=

^

k�1

R

l

is bounded above by

6 � (2 � 2

(

^

k+1)=2

� 


00

� LG

0

(n))

2

� (2

�

^

k+2

+ 2

�

^

k+2

) � v
ell

= 6 � (4 � 2

^

k+1

� (


00

� LG

0

(n))

2

) � (2 � 2

�

^

k+2

) � v
ell

= 384 � (


00

� LG

0

(n))

2

� v
ell;

whi
h 
ompletes the proof of the proposition.

Proposition 7. The expe
ted number of sites in R

0

n [

6

i=1

R

i

0

is bounded

above by

12 � n

1=3

� (


00

� LG(n))

2

;

and in [

^

k�2

l=1

R

l

n [

6

i=1

([

^

k�2

l=1

R

i

l

) by

(1 +

p

2) � 48 � n

1=3

� 


00

� LG

0

(n):

Proof. From the de�nitions, the volume of R

0

n [

6

i=1

R

i

0

is bounded above by

12 � n

1=3

� (


00

� LG(n))

2

� v
ell;

and that of [

^

k�2

l=1

R

l

n [

6

i=1

([

^

k�2

l=1

R

i

l

) by

P

^

k�2

l=1

2 � 12 � n

1=3

� 2

l=2

� 


00

� LG

0

(n) � 2

�l+1

� v
ell

=

P

^

k�2

l=1

48 � n

1=3

� 2

�l=2

� 


00

� LG

0

(n) � v
ell

� (1 +

p

2) � 48 � n

1=3

� 


00

� LG

0

(n) � v
ell:

11



The proposition now follows.

Proof of the theorem. It suÆ
es to prove the theorem for the 2�dimensional

fa
es or fa
ets, sin
e from Klee (1966) and the Euler formula the number of ver-

ti
es and edges of a 3-dimensional polyhedron is bounded above by a 
onstant

times the number of fa
ets of the polyhedron. As mentioned above, the proof


onsists of 
omputing where ne
essary the expe
ted number of Voronoi neigh-

bor pairs within and between the regions R

i

k

, i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2,

[

^

k

k=0

R

k

n [

6

i=1

[

^

k�2

k=0

R

i

k

, R

�1

nR

�2

and R

�2

.

To this end, let p be a site in R

�1

.

Sin
e for ea
h site q in [

^

k

k=1

R

k

, dist(q; R

�1

) � l
ell � (LG(n)� 2), from Bent-

ley, et al. (1980) we must have that 
onstantsM

0

1

andM

0

2

> 0 exist independent

of n and p, su
h that the probability that p has Voronoi neighbors in [

^

k

k=1

R

k

is bounded above by

M

0

1

� exp(�M

0

2

� (LG(n))

3

):

Therefore, the expe
ted number of fa
ets of the Voronoi diagram for S that

are shared by Voronoi polyhedra of sites in R

�1

with Voronoi polyhedra of

sites in [

^

k

k=1

R

k

is bounded above by

n � n �M

0

1

� exp(�M

0

2

� (LG(n))

3

):

Similarly, positive 
onstants M

00

1

and M

00

2

exist independent of n, su
h that

the expe
ted number of fa
ets of the Voronoi diagram for S that are shared

by Voronoi polyhedra of sites in R

�2

with Voronoi polyhedra of sites in R

0

is

bounded above by

n � n �M

00

1

� exp(�M

00

2

� (LG(n))

3

):

For ea
h i, i = 1; : : : ; 6, let R

i

�1

denote the possibly empty subset of R

�1

nR

�2

fx 2 R

�1

nR

�2

: dist(x; f

j

) � l
ell � (1 + 


00

) � LG(n); j = 1; : : : ; 6; j 6= ig:

Given i, 1 � i � 6, let p be a site in R

i

�1

.

Sin
e for ea
h site q in R

0

n [

6

j=1

R

j

0

, dist(q; R

i

�1

) � l
ell � LG(n), from Bentley,

et al. (1980) we must have again that 
onstants M

000

1

and M

000

2

> 0 exist inde-

pendent of i, n and p, su
h that the probability that p has Voronoi neighbors

in R

0

n [

6

j=1

R

j

0

is bounded above by

M

000

1

� exp(�M

000

2

� (LG(n))

3

):

Also, as in the proof of Proposition 7, it follows that the expe
ted number

of sites in (R

�1

nR

�2

) n [

6

j=1

R

j

�1

is bounded above by 12 � n

1=3

� (


00

� LG(n))

2

.

Thus, sin
e the number of sites in (R

0

n [

6

j=1

R

j

0

) [ ((R

�1

nR

�2

) n [

6

j=1

R

j

�1

) is

12



binomially distributed so that its varian
e is less than its expe
ted value,

it must follow from Proposition 7 that the expe
ted number of fa
ets of

the Voronoi diagram for S that are shared by Voronoi polyhedra of sites in

R

�1

nR

�2

with Voronoi polyhedra of sites in R

0

n [

6

j=1

R

j

0

is bounded above

by

n � n �M

000

1

� exp(�M

000

2

� (LG(n))

3

) +

(24 � n

1=3

� (


00

� LG(n))

2

)

2

+ 24 � n

1=3

� (


00

� LG(n))

2

:

Therefore, sin
e the number of sites in [

^

k

l=0

R

l

n [

6

i=1

[

^

k�2

l=0

R

i

l

is also binomially

distributed so that its varian
e is also less than its expe
ted value, it must

follow from Propositions 4, 5, 6 and 7 that 
onstants M

0

and 


00

> 0 exist

independent of n su
h that the expe
ted number of fa
ets of the Voronoi

diagram for S that are also fa
ets of Voronoi polyhedra of sites in R nR

�1

is

bounded above by

O(n

2=3

� (LG(n))

4

) + 6 �

^

k�2

X

k=1

M

0

� 2

�k

� n

2=3

� (LG

0

(n))

2

+

(384 � (


00

� LG

0

(n))

2

+ 12 � n

1=3

� (


00

� LG(n))

2

+

(1 +

p

2) � 48 � n

1=3

� 


00

� LG

0

(n))

2

+

384 � (


00

� LG

0

(n))

2

+ 12 � n

1=3

� (


00

� LG(n))

2

+

(1 +

p

2) � 48 � n

1=3

� 


00

� LG

0

(n) +

n

2

�M

0

1

� exp(�M

0

2

� (LG(n))

3

) +

n

2

�M

00

1

� exp(�M

00

2

� (LG(n))

3

) +

n

2

�M

000

1

� exp(�M

000

2

� (LG(n))

3

) +

(24 � n

1=3

� (


00

� LG(n))

2

)

2

+ 24 � n

1=3

� (


00

� LG(n))

2

= M � n

2=3

� (LG(n))

4

= M � n

2=3

� (
 � logn)

4

;

whereM is a fun
tion of n, 
 and 


0

that de
reases for �xed 
 and 


0

, 0 < 
 � 


0

.

This 
ompletes the proof of the theorem.

The following 
orollary is a dire
t 
onsequen
e of results in Bentley, et al.

(1980) and the theorem.

Corollary. O(n) is the expe
ted number of fa
es of the Voronoi diagram

for S.

Proof. From Bentley, et al. (1980) there exist positive 
onstants M

0

1

and M

0

2

13



independent of n su
h that

O(1) + n �M

0

1

� exp(�M

0

2

� (LG(n))

3

)

is the expe
ted number of fa
es of the Voronoi diagram for S that are also fa
es

of the Voronoi polyhedron of any given site in R

�1

. Thus, from the theorem,

the expe
ted number of fa
es of the Voronoi diagram for S is

n � (O(1) + n �M

0

1

� exp(�M

0

2

� (
 � logn)

3

) +O(n

2=3

� (
 � logn)

4

) =M � n;

whereM is a fun
tion of n, 
 and 


0

that de
reases for �xed 
 and 


0

, 0 < 
 � 


0

.

The geometri
al nature of the proofs of the theorem and the 
orollary, and

the fa
t that O(n

2

) is the maximum number of fa
ets that the Voronoi diagram

for a set of n sites in E

d

, d � 3, 
an have (see Klee (1980), Pas
hinger (1982),

Preparata (1977), Seidel (1982)), suggest the following 
onje
ture. Here, it is

assumed that S is a set of n sites in E

d

, d > 3, 
hosen independently from a

uniform distribution in a d�dimensional hyper
ube R, and that R has been

divided into m

d

equal-sized 
ells, where m is the 
oor of n

1=d

.

Conje
ture. For �xed d, O(n

1�1=d

� (
 � logn)

d+1

) is an upper bound for the

expe
ted number of fa
ets or (d� 1)�dimensional fa
es of the Voronoi diagram

for S that are also fa
ets of Voronoi polyhedra of sites in the outermost LG(n)

layers of 
ells of R. Consequently, O(n) is the expe
ted number of fa
ets of

the Voronoi diagram for S.

The following remark relates to the expe
ted number of fa
es of the 
onvex

hull of S.

Remark. From Bentley, et al. (1980) there exist positive 
onstants M

0

1

and

M

0

2

independent of n su
h that the probability that the Voronoi polyhedron

of any site in R

�1

is unbounded is bounded above by

M

0

1

� exp(�M

0

2

� (LG(n))

3

):

From Proposition 3 and the de�nition of a 
losed site there exist positive


onstants M

1

and M

2

independent of n su
h that the probability that the

Voronoi polyhedron of any site in [

6

i=1

[

^

k�2

k=0

R

i

k

is unbounded is bounded above

by

M

1

� exp(�M

2

� (LG(n))

2

):

Thus, from Propositions 6 and 7, Klee (1966) and the Euler formula, the

expe
ted number of fa
es of the 
onvex hull of S is bounded above by

n �M

0

1

� exp(�M

0

2

� (LG(n))

3

) + n �M

1

� exp(�M

2

� (LG(n))

2

) +

14



384 � (


00

� LG

0

(n))

2

+ 12 � n

1=3

� (


00

� LG(n))

2

+

(1 +

p

2) � 48 � n

1=3

� 


00

� LG

0

(n)

= O(n

1=3

� (logn)

2

):

4. SUMMARY

Let S be a set of n sites 
hosen independently from a uniform distribution

in a d�dimensional hyper
ube R, and assume R has been divided into m

d

equal-sized 
ells, where m is the 
oor of n

1=d

. In addition, let 
 and 


0

be

positive numbers, and de�ne LG(n) as the 
oor of 
 � logn, where log denotes

the natural logarithm. In
uen
ed by Bentley, Weide and Yao's work (1980),

we have shown that if d equals 3 then M � n

1�1=d

� (
 � logn)

d+1

is an upper

bound for the expe
ted number of fa
ets of the Voronoi diagram for S that are

also fa
ets of Voronoi polyhedra of sites in the outermost LG(n) layers of 
ells

of R, where M is a fun
tion of n, 
 and 


0

that de
reases for �xed 
 and 


0

,

0 < 
 � 


0

. Subsequently, from this result and results in Bentley, et al. (1980),

we have shown that O(n) is an upper bound for the expe
ted number of fa
ets

of the Voronoi diagram for S. A

ordingly, we have 
onje
tured that similar

results hold for �xed d > 3, and from Klee (1966) and the Euler formula have


on
luded that for d = 3, the same results hold for the 0� and 1�dimensional

fa
es of the Voronoi diagram for S.

A
tually, without expli
itly stating it, we have established the existen
e

of an expe
ted O(n) algorithm for 
onstru
ting Voronoi diagrams in three

dimensions. To see this, we note that for ea
h site in the outermost LG(n)

layers of 
ells of R, we have impli
itly shown the feasibility of obtaining a

subset of S that 
ontains all of the Voronoi neighbors of the site. This is done

in su
h a way that the expe
ted time involved in obtaining all su
h subsets for

all su
h sites is bounded above by M � n

2=3

� (
 � logn)

4

, where M is a fun
tion

of n, 
 and 


0

that de
reases for �xed 
 and 


0

, 0 < 
 � 


0

. Thus, sin
e the

interse
tion of k half-spa
es in 3�dimensional spa
e 
an be found in time

O(k � log k) (see Preparata and Muller (1979)), a 
omputation 
an be 
arried

out to show that the Voronoi polyhedra of the sites in the outermost LG(n)

layers of R 
an be found in at most

O(n

2=3

� (
 � logn)

4

) � logn =M

0

� n

2=3

� (
 � logn)

4

� logn

expe
ted time, where M

0

is a fun
tion of n, 
 and 


0

that de
reases for �xed


 and 


0

, 0 < 
 � 


0

. This observation, together with results in Bentley, et al.

(1980), then shows the existen
e of the algorithm. We note that an implemen-

tation of this algorithm is 
urrently being tested at the National Institute of

Standards and Te
hnology, and 
omputational results obtained from our tests

15



will be presented in a forth
oming paper. It should also be noted that the

te
hniques employed in this algorithm are quite di�erent from those used in

an expe
ted O(n) algorithm re
ently presented in Dwyer (1988) for 
onstru
t-

ing Voronoi diagrams for point sets 
hosen uniformly from the d�dimensional

ball.
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